Quantbase

Strategy Types

This catalog documents the trading strategies supported by our backtesting system, their intended market structures, technical logic, input assumptions, and application guidance.

Showing 12 of 12 types
directional
Beat baseline using forecast direction
Directional vs baselinePre-gate D-1 forecast vs baseline
1 ex1 params
0 required1 optional
threshold
Filter noise via deviation threshold
Thresholded directionalPre-gate D-1 forecast vs baseline
1 params
1 required0 optional
contrarian
Exploit forecast biases (opposite direction)
ContrarianPre-gate D-1 forecast vs baseline
1 params
0 required1 optional
quantile
Size by percentile of deviation
Quantile-based sizingHistorical quantiles of `forecast-baseline`
1 params
1 required0 optional
quantile_high
Trade high-end forecast error extremes
Tail (high)Rolling quantiles of forecast error
2 params
2 required0 optional
quantile_low
Trade low-end forecast error extremes
Tail (low)Rolling quantiles of forecast error
2 params
2 required0 optional
quantile_extreme
Trade both tails of forecast error
Tails (both)Rolling quantiles of forecast error
3 params
3 required0 optional
auction
Optimize DA bid curves
Dual MILP optimizationPre-gate inputs; asset constraints
10 ex4 params
4 required0 optional
inter_hour_spread
Mean reversion in hour spreads
Spread z-scoreLive intraday prices (hour-pair z-score)
3 params
3 required0 optional
volatility_regime
Capture vol upshifts via straddle-like logic
Vol regime ratioLive rolling vol vs 7-day MA
3 params
3 required0 optional
forecast_anomaly
Contrarian on anomalous forecasts (ML)
IsolationForest anomalyContinuous retraining on forecast errors
3 params
3 required0 optional
calendar_roll
DA–ID premium convergence (calendar/roll)
Roll premium z-scoreNext-day vs current forecast premium (live)
3 params
3 required0 optional